
Fear the EAR: Discovering and Mitigating
Execution After Redirect Vulnerabilities

Adam Doupé, Bryce Boe, Christopher Kruegel, and Giovanni Vigna
University of California, Santa Barbara

{adoupe, bboe, chris, vigna}@cs.ucsb.edu

ABSTRACT

The complexity of modern web applications makes it diffi-
cult for developers to fully understand the security implica-
tions of their code. Attackers exploit the resulting security
vulnerabilities to gain unauthorized access to the web appli-
cation environment. Previous research into web application
vulnerabilities has mostly focused on input validation flaws,
such as cross-site scripting and SQL injection, while logic
flaws have received comparably less attention.

In this paper, we present a comprehensive study of a rela-
tively unknown logic flaw in web applications, which we call
Execution After Redirect, or EAR. A web application de-
veloper can introduce an EAR by calling a redirect method
under the assumption that execution will halt. A vulnera-
bility occurs when server-side execution continues after the
developer’s intended halting point, which can lead to bro-
ken/insufficient access controls and information leakage. We
start with an analysis of how susceptible applications written
in nine web frameworks are to EAR vulnerabilities. We then
discuss the results from the EAR challenge contained within
the 2010 International Capture the Flag Competition. Fi-
nally, we present an open-source, white-box, static analysis
tool to detect EARs in Ruby on Rails web applications. This
tool found 3,944 EAR instances in 18,127 open-source appli-
cations. Finally, we describe an approach to prevent EARs
in web frameworks.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]

General Terms

Security

Keywords

static analysis, web applications, execution after redirect

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

1. INTRODUCTION
An increasing number of services are being offered on-

line. For example, banking, shopping, socializing, reading
the news, and enjoying entertainment are all available on the
web. The increasing amount of sensitive data stored by web
applications has attracted the attention of cyber-criminals,
who break into systems to steal valuable information such
as passwords, credit card numbers, social security numbers,
and bank account credentials.

Attackers use a variety of vulnerabilities to exploit web
applications. In 2008, Albert Gonzalez was accused and
later convicted of stealing 40 million credit and debit cards
from major corporate retailers, by writing SQL injection
attacks [20, 30]. Another common vulnerability, cross-site
scripting (XSS), is the second highest-ranked entry on the
OWASP top ten security risks for web applications, behind
injection attacks like SQL injection [29]. Thus, SQL in-
jection and XSS have received a large amount of attention
by the security community. Other popular web application
vulnerabilities include cross site request forgery (XSRF) [5],
HTTP parameter pollution (HPP) [3, 12], HTTP response
splitting [27], and clickjacking [2,21].

In this paper, we present an in-depth study of a little-known
real-world web application logic flaw; one we are calling Ex-
ecution After Redirect (EAR). An EAR occurs because of
a developer’s misunderstanding of how the web application
framework operates. In the normal workflow of a web appli-
cation, a user sends a request to the web application. The
web application receives this request, performs some server-
side processing, and returns an HTTP response. Part of
the HTTP response can be a notification that the client (a
web browser) should look elsewhere for the requested re-
source. In this case, the web application sets the HTTP
response code to 301, 302, 303, or 307, and adds a Loca-

tion header [32]. These response codes instruct the browser
to look for the resource originally requested at a new URL
specified by the web application in the HTTP Location

header [31]. This process is known as redirection1; the web
application redirects the user to another resource.

Intuitively, one assumes that a redirect should end execu-
tion of the server side code; the reason is that the browser
immediately sends a request for the new location as soon as
the redirection response is received, and it does not process
the rest of the web application’s output. Some web frame-

1In this paper, we consider only HTTP server-side redirec-
tion. Other forms of redirection, executed on the client, exist
such as JavaScript redirect or HTML meta refresh.

works, however, do not halt execution on a redirect. This
can lead to EAR vulnerabilities.

Specifically, an EAR can be introduced when a web appli-
cation developer writes code that issues an HTTP redirect
under the assumption that the redirect will automatically
halt execution of the web application. Depending on the
framework, execution can continue after the call to the redi-
rect function, potentially violating the security properties of
the web application.

We define halt-on-redirect as a web framework behav-
ior where server-side code execution halts on a redirect,
thus preventing EARs. Unfortunately, some languages make
halt-on-redirect difficult to implement, for instance, by not
supporting a goto-type statement. Therefore, web frame-
works differ in supporting halt-on-redirect behavior. This
difference in redirect method semantics can increase the de-
veloper’s confusion when developing applications in different
frameworks.

In this paper, we present a comprehensive study of Execu-
tion After Redirect vulnerabilities: we provide an overview
of EARs and classify EARs into different types. We also
analyze nine web application frameworks’ susceptibility to
EARs, specifying their redirect semantics, as well as detail-
ing what exactly makes them vulnerable to EARs. More-
over, we develop a novel static analysis algorithm to detect
EARs, which we implemented in an open-source tool to ana-
lyze Ruby on Rails web applications. Finally, we discovered
hundreds of vulnerabilities in open-source Ruby on Rails
web applications, with a very low false positive rate.

In summary, this paper provides the following contribu-
tions:

• We categorize EARs and provide an analysis of nine
frameworks’ susceptibility to various types of EARs.

• We discuss the results from the EAR challenge con-
tained within our 2010 International Capture the Flag
Competition.

• We present an algorithm to statically detect EARs in
Ruby on Rails applications.

• We run our white-box tool on 18,127 open-source Ruby
on Rails applications, which found 3,944 EARs.

2. OVERVIEW OF EARS
An Execution After Redirect vulnerability is a logic flaw

in web applications that results from a developer’s misun-
derstanding of the semantics of redirection. Very often this
misunderstanding is caused by the web framework used by
the developer2. In particular, developers typically assume
that the web application will halt after calling a function
of the web framework that performs a redirect. Certain
web frameworks, however, do not halt execution on a redi-
rect, and instead, execute all the code that follows the redi-
rect operation. The web browser perpetuates this misunder-
standing, as it obediently performs the redirect, thus falsely
indicating that the code is correct. As a result, when the

2 This misunderstanding was confirmed by a developer who
responded to us when we notified him of an EAR in his code,
who said, “I wasn’t aware at all of this problem because I
thought ruby on rails will always end any execution after a
redirect.” This example shows that developers do not always
understand how their web framework handles redirects.

1 class TopicsController <
ApplicationController

2 def update
3 @topic = Topic.find (params [:id])
4 if not current_user .is_admin ?
5 redirect_to ("/")
6 end
7 @topic. update_attributes (params[: topic])
8 flash[: notice] = "Topic updated!"
9 end

10 end

Listing 1: Example of an Execution After Redirect
vulnerability in Ruby on Rails.

developer tests the web application using the browser, the
observed behavior seems in line with the intentions of the
developer, and, consequently, the application is assumed to
be correct.

Note that an EAR is not a code injection vulnerability;
an attacker cannot execute arbitrary code, only code already
present after the redirect. An EAR is also different from XSS
and SQL injection vulnerabilities; it is not an input valida-
tion flaw, but rather a mismatch between the developer’s
intentions and the actual implementation.

As an example, consider the EAR vulnerability in the
Ruby on Rails code shown in Listing 1. The code appears to
redirect the current user to “/” if she is not an administra-
tor (Line 5), and, if she is an administrator, @topic will be
updated with the parameters sent by the user in the params
variable (Line 7). The code does not execute in this way, be-
cause Ruby on Rails does not support halt-on-redirect be-
havior. Thus, any user, not only the administrator, can
update the topic, violating the intended authorization and
compromising the security of the web application.

The simple way to fix Listing 1 is to add a return after
the redirect_to call on Line 5. This will cause the update

method to terminate after the redirect, thus, no additional
code will be executed. Adding a return after all redirects is
a good best practice, however, it is insufficient to prevent all
EARs. Listing 2 depicts an example of an EAR that cannot
be prevented by adding a return after a redirect. Here, the
redirect_to on Line 4 is followed by a return, so there is no
EAR in the ensure_admin method. However, ensure_admin
is called by delete on Line 10, which calls redirect_to on
Line 4. The return call on Line 5 will return the control flow
back into the delete method, and execution will continue
on Line 11. Thus, the @user object will still be deleted
on Line 12, regardless of whether the current_user is an
administrator or not, introducing an EAR. Unfortunately
in some frameworks, the developer cannot simply use exit

instead of return to halt execution after a redirect because
the web application is expected to handle multiple requests.
Therefore, calling exit would kill the web application and
prevent further requests.

2.1 EAR History
Execution After Redirect vulnerabilities are not a new

occurrence; we found 17 Common Vulnerabilities and Ex-
posures (CVE) EAR vulnerabilities dating back to 2007.
These CVE entries were difficult to find because EARs do
not have a separate vulnerability type; the EAR CVE vul-

1 class UsersController <
ApplicationController

2 def ensure_admin
3 if not current_user .is_admin ?
4 redirect_to ("/")
5 return
6 end
7 end
8
9 def delete

10 ensure_admin ()
11 @user = User .find (params[:id])
12 @user.delete ()
13 flash[: notice] = "User Deleted"
14 end
15 end

Listing 2: Example of a complex Execution After Redirect
vulnerability in Ruby on Rails.

nerabilities we found3 were spread across different Common
Weakness Enumeration Specification (CWE) types: “Input
Validation,” “Authentication Issues,” “Design Error,” “Cre-
dentials Management,”“Code Injection,” and “Permissions,
Privileges, and Access Control.” These vulnerabilities types
vary greatly, and this indicates that EARs are not well un-
derstood by the security community.

2.2 EARs as Logic Flaws
While logic flaws are typically thought of as being unique

to a specific web application, we believe EARs are logic
flaws, even though they are systemic to many web appli-
cations. Because an EAR is the result of the developer’s
misunderstanding of the web application framework, there
is an error in her logic. The intuition is that the redirect is
an indication of the developer’s intent for ending server-side
processing. A redirect can be thought of as a goto - the
developer, in essence, wishes to tell the user to look some-
where else. However, it does not act as a goto, because the
server-side control flow of the application is not terminated,
even though that is how it appears from the perspective of
the client.

There are almost no valid reasons to have code executed
after a redirect method. The few exceptions are: perform-
ing cleanup actions, such as closing open files, and starting
long-running processes, such as encoding a video file. In
the former case, the cleanup code can be executed before a
redirect, and in the latter case, long-running processes can
be started asynchronously, alleviating the need to have code
executed after a redirect.

Because there is no reason to execute code after a redi-
rect, we can infer that the presence of code executed after a
redirect is a logic flaw.

2.3 Types of EARs
Execution After Redirect logic flaws can be of two types:

benign or vulnerable. A benign EAR is one in which no se-
curity properties of the application are violated, even though

3The interested reader is directed to the following EARs:
CVE-2009-2168, CVE-2009-1936, CVE-2008-6966, CVE-
2008-6965, CVE-2008-0350, CVE-2007-6652, CVE-2007-
6550, CVE-2007-6414, CVE-2007-5578, CVE-2007-4932,
CVE-2007-4240, CVE-2007-2988, CVE-2007-2776, CVE-
2007-2775, CVE-2007-2713, CVE-2007-2372, and CVE-
2007-2003.

1 $current_user = get_current_user ();
2 if (! $current_user ->is_admin ())
3 {
4 header("Location : /");
5 }
6 echo "Sensitive Information ";

Listing 3: Example of an information leakage Execution
After Redirect vulnerability in PHP. If the current_user

is not an administrator, the PHP header function will be
called, redirecting the user to “/”. However, the sensitive
information will still be returned in the output, thus leaking
information. The fix is to call the exit function after the
header call.

additional, unintended, code is executed after a redirect. For
example, the code executed after the redirect could set a lo-
cal variable to a static string, and the local variable is not
used or stored. Although no security properties are violated,
a benign EAR may indicate that a developer misunderstood
the redirect semantics of the web framework, posing the risk
that code will, in the future, be added after the redirect, el-
evating the EAR from benign to vulnerable.

A vulnerable EAR occurs when the code executed after
the redirect violates the security properties of the web ap-
plication. More specifically, in a vulnerable EAR the code
executed after the redirect allows unauthorized modification
to the state of the web application (typically the database),
and/or causes leakage (reads and returns to the browser)
of data to an unauthorized user. In the former case (e.g.,
see Listing 1), the integrity of the web application is com-
promised, while in the latter case, the confidentiality of the
web application is violated (e.g., see Listing 3). Thus, every
vulnerable EAR is an instance of broken/insufficient access
controls, because the redirect call is an indication that the
user who made the request is not allowed to access the re-
quested resource.

EAR vulnerabilities can be silent. In a silent EAR, the
execution of code does not produce any output. This lack of
information makes silent EARs difficult to detect via a black-
box approach, while information leakage EARs are easier to
detect with black-box tools. Listings 1 and 2 are examples of
silent EARs, and Listing 3 is an example of an information
leakage EAR.

2.4 Framework Analysis
Web application frameworks vary on supporting halt-on-

redirect behavior. Therefore, different frameworks provide
protection against different kinds of EAR vulnerabilities.
The differing semantics of redirects increases the confusion
of developers. A developer we contacted said, “I didn’t real-
ize that [Ruby on Rails’] redirect to was like PHP’s header
redirect and continued to run code.” Thus, an understand-
ing of the web framework’s redirect semantics is essential to
produce correct, EAR-free, code.

We analyzed nine of the most popular web frameworks
to see how they differ with respect to their built-in redirect
functions. The nine frameworks were chosen based on their
StackOverflow activity, and include one framework for each
of the Ruby, Groovy, and Python languages, three frame-
works for the PHP language, one framework that can be
applied to both C# and Visual Basic, and two frameworks

for the Java language [7]. While the frameworks selected for
analysis are not exhaustive, we believe they are diverse and
popular enough to be representative of real-world usage.

To analyze the frameworks, we created nearly identical
copies of a simple web service in each of the nine web frame-
works. This web service provided access to four pages within
the web application. The first was the root page, “/”, which
simply linked to the other three pages. The second was
the redirect page, “/redirect”, which was used to test proper
redirect behavior. The third was the EAR page, “/ear”,
which called the framework’s redirect function, appended a
message to a log file regarding the request, and finally at-
tempted to return a rendered response to the browser. The
last page was the log page, “/log”, which simply displayed
the contents of the log file.

Using this design for the web application allowed us to
check for integrity violations, represented by the appended
log message, and confidentiality violations, represented by
output sent after the HTTP redirect response when request-
ing the EAR page. We approached the implementation of
this web application in each framework as many developers
new to that framework would. That is, whenever possible,
we followed the recommended tutorials and coding practices
required to build a web application in the framework.

A brief background on the model-view-controller (MVC)
software architecture is necessary to follow our analysis, as
each framework analyzed fits the MVC pattern. The MVC
architecture supports the separation of the persistent stor-
age (model), the user interface (view), and the control flow
(controller) [33]. More precisely, the models interact with
the database, the views specify the output to return to the
client, and the controllers are the glue that puts everything
together. The controller must handle HTTP requests, fetch
or update models, and finally return a view as an HTTP
response. When following the MVC paradigm, a controller
is responsible for issuing a redirect call.

The following sections describe our analysis of each frame-
work’s susceptibility to EAR vulnerabilities based on their
redirect functions’ use and documentation. We developed
the test application in the latest stable version of each frame-
work available at the time. The version numbers are listed
adjacent to the framework name in the section headers.

2.4.1 Ruby on Rails 3.0.5

Ruby on Rails, commonly referred to as Rails, is a popular
web application framework. Unfortunately, Rails is suscep-
tible to EAR vulnerabilities. Rails provides the redirect_to
function, which prepares the controller for sending the HTTP
redirect. However, the redirect is not actually sent at this
point, and code continues to execute following the call to
redirect_to. In Rails, there is no mechanism to ensure
that code halts following a redirect, thus if exit is called, a
developer must return from the controller’s entry function
without executing additional code.

As previously mentioned in Section 2, the Ruby exit com-
mand cannot be used to halt the execution of a controller
after a redirect. This is for two reasons: the first is that
redirect_to does not immediately send output when it is
called, thus if exit is called, the user will never see the
redirect. The second reason is that Rails web applications
are long-running processes that handle multiple incoming re-
quests, unlike PHP, which typically spawns a new instance
for each request. Therefore, calling exit to halt execution

is not feasible, as it will terminate the Rails application,
preventing it from handling further requests.

On a positive note, information leakage EARs are impossi-
ble in Rails web applications because a controller can either
perform a redirect, or render a response (view) to the user.
Any call to render after a redirect will result in Rails throw-
ing a DoubleRenderError. This exception is thrown in all
possible combinations: render after a redirect, render after a
render, redirect after a render, and redirect after a redirect.

2.4.2 Grails 1.3.7

Grails is a framework written in Groovy, which was mod-
eled after the Ruby on Rails framework. Thus, Grails be-
haves in a manner nearly identical to Rails with respect
to redirects. Specifically, code will continue to execute fol-
lowing a call to the redirect function, and, therefore, the
developer must take precautions to avoid creating an EAR
vulnerability. Unfortunately, as of this writing, nowhere in
the Grails documentation on redirects does it mention that
code will continue to execute following a redirect [34].

Unlike Ruby on Rails, the behavior of Grails is somewhat
less predictable when it comes to the order of view rendering
and/or calls to redirect. To explain, we will say that to
“render” means to output a view, and to “redirect” means
to call the redirect function. As previously mentioned in
Section 2.4.1, in Rails, only one render or one redirect may
be called in a controller; a DoubleRenderError is thrown
in the case of multiple calls. In Grails, however, the only
redirect exception, CannotRedirectException, occurs when
a redirect is called following another redirect. In cases where
multiple calls to render are made, the final render is the only
one that is sent to the browser. More importantly, in cases
where both redirect and render are called, regardless of their
order, the redirect is actually sent to the browser and the
render call is simply ignored. Due to this behavior of Grails,
it is not vulnerable to an information leakage EAR. However,
like Rails, it is still vulnerable to silent EARs that violate
the integrity of the application.

2.4.3 Django 1.2.5

Django is a Python web application framework that dif-
fers in its handling of redirects compared to the other frame-
works (save for ASP.NET MVC). Rather than calling func-
tions to render or perform the redirect, Django requires the
developer to return an HttpResponse object from each con-
troller. Django’s documentation makes it clear that call-
ing Django’s redirect function merely returns a subclass
of the HttpResponse object. Thus, there is no reason for
the developer to expect the code to halt when calling redi-

rect. The actual HTTP redirect is sent to the browser only
if this object is also returned from the controller’s entry
point, thereby removing the possibility of further code ex-
ecution [15]. Because the controller’s entry point can only
return a single HttpResponse object, the developer can rely
completely on her browser for testing purposes. This behav-
ior makes Django impervious to all EARs.

2.4.4 ASP.NET MVC 3.0

ASP.NETMVC is a web application framework developed
by Microsoft that adds a Model-View-Controller paradigm
on top of traditional ASP.NET, which includes the languages
C# and Visual Basic [1]. ASP.NET MVC is similar to
Django, in that all controllers must return an ActionRe-

sult object. In order to perform redirection, either a Redi-

rectResult or RedirectToRouteResult object must be re-
turned, which are both subclasses of ActionResult. Like
Django, this behavior makes ASP.NET MVC impervious to
all EARs.

2.4.5 Zend Framework 2.3

By default, the PHP based Zend Framework is not sus-
ceptible to EAR vulnerabilities because its redirect methods
immediately result in the termination of server-side code.
This default behavior is consistent in the two methods used
to perform a redirect in the Zend Framework. The simplest
method is by using the _redirect method of the controller,
however, the recommended method is to use the Redirector
helper object [36].

While the default behavior is not vulnerable to EARs,
the Zend Framework supports disabling halt-on-redirect for
both methods. The _redirect method will not halt when
the keyword argument exit=False is provided as part of the
call. Disabling halt-on-redirect when using the Redirector

helper requires calling SetExit(False) on the Redirector

helper object prior to making the redirect call. The latter
method is particularly interesting because any code executed
during the request has the ability to modify the behavior of
redirects called using the Redirector helper. Fortunately,
even when using the Redirector helper, the developer has
the option of using a set of functions suffixed with“AndExit”
that always halt-on-redirect.

When halt-on-redirect is disabled in Zend, it becomes vul-
nerable to integrity violation EARs. However, the default
view rendering behavior no longer occurs. Thus, even when
modifying the default behavior, information leakage EARs
will never occur in the Zend Framework.

2.4.6 CakePHP 1.3.7

Similar to the Zend Framework, the CakePHP framework
is also not susceptible to EAR vulnerabilities out of the box.
By default, CakePHP’s single redirect method immediately
results in the termination of the PHP script. In a manner
similar to the Zend Framework, this default behavior can
be modified by setting the third argument of redirect to
False, which in turn also disables the default mechanism for
view rendering [11]. Thus CakePHP is vulnerable to EARs
in exactly the same way as the Zend Framework.

2.4.7 CodeIgniter 2.0.0

Unlike the Zend Framework and CakePHP, CodeIgniter
is a very lightweight PHP framework, and thus, it does
not offer much out of the box. Nevertheless, the frame-
work still provides a url helper class that contains a redi-
rect method [16]. CodeIgniter’s redirect method always ex-
its after setting the redirect header; a behavior that can-
not be changed. Therefore CodeIgniter is impervious to
EARs when developers use only the provided redirect func-
tion. Unfortunately, the url helper class must be included
manually. As a result, there is the risk that developers will
not use the provided redirect function and instead intro-
duce EARs by neglecting to call exit following a call to
header("Location:<path>").

2.4.8 J2EE 1.4

Java 2 Platform, Enterprise Edition (J2EE) defines a serv-
let paradigm for the development of web applications and

web application frameworks in Java. Thus, to perform a
redirect in J2EE, or a J2EE-based framework, the devel-
oper calls HttpServletResponse.sendRedirect. This redi-
rect function will clear out everything previously in the out-
put buffer, set the Location header to the redirect location,
set the response code to 302, and finally flushes the output
buffer to the browser. However, sendRedirect does not halt
execution of the servlet. Thus, only silent EARs are present
in J2EE web applications, or any framework that is based
on J2EE servlets.

2.4.9 Struts 2.2.3

Apache Struts is an MVC framework that is built on top
of the servlet model provided by J2EE. Thus, Struts inher-
its all the potential vulnerabilities of the J2EE framework,
specifically that silent EARs are possible but information
leakage EARs are not possible. This is because to perform a
redirect, the HttpServletResponse.sendRedirect method
of J2EE must be called.

2.5 EAR Security Challenge
Each year since 2003, we have organized and hosted a se-

curity competition called the International Capture the Flag
(iCTF). The competition pits dozens of teams from various
universities across the world against each other in a test of
their security prowess. While each iCTF has a primary ob-
jective, the competitions typically involve secondary security
challenges tangential to the primary objective [14].

For the 2010 edition of the iCTF, we constructed a se-
curity challenge to observe the familiarity of the teams to
Execution After Redirect vulnerabilities. The challenge in-
volved a vulnerable EAR that violated both the confiden-
tiality and the integrity of the web application. The confi-
dentiality was violated when the web application’s admin-
istrator view was leaked to unauthorized users following a
redirect; the unauthorized users were “correctly” redirected
to an error page. The information contained in the leaked
view provided enough information to allow for an integrity
violation had the database not purposefully been in a read-
only state. More importantly, the initial data leak provided
the means to leak further information, thus allowing teams
to successfully solve the challenge [6].

The crux of the EAR challenge relied on the automatic
redirecting of web browsers and other web clients, such as
wget and curl. To our surprise, many of the teams relied
only on the output produced by their web browser, and,
therefore, failed to notice the leaked information. It is im-
portant to note that the teams in this competition are pri-
marily made up of graduate and undergraduate level stu-
dents from various universities; many would not be consid-
ered security professionals. Nevertheless, we assumed that
the meticulous eye of a novice-to-intermediate level hacker
attempting to break into a web service would be more likely
to detect information leakage when compared to a web de-
veloper testing their application for “correct” page flow.

Of the 72 teams in the competition, 69 contacted the web
server at least once. 44 of these 69 teams advanced past
the first step, which required them to submit a file as per
the web application’s specifications. 34 of the 44 teams ad-
vanced past the second step, which required them to brute
force a two-digit password. It was at this point that the
EAR vulnerability was exposed to the teams, resulting in
both a redirect to the unauthorized error page and the leak-

1) Build CFG

 Rails Application

2) Find Redirection Methods

 CFG

3) Prune Infeasible Paths

 CFG, interesting methods

4) Detect EARs

 CFG, interesting methods

5) Classify as Vulnerable

 EARs

 Benign EARs, Vulnerable EARs

Figure 1: The logical flow of the white-box tool.

age of the administrator page as part of the HTTP redirect
response. Of the 34 teams who made it this far, only 12
successfully discovered and exploited the vulnerability. The
fact that only 12 out of 34 teams were successfully able to
discover the information leaked to their browser in a hacking
competition indicated that more research and exposure was
necessary for EAR vulnerabilities.

3. EAR DETECTION
In this section, we discuss the design and implementation

of our system to detect EAR vulnerabilities. This system
uses static source code analysis to identify cases in which
code might be executed after the call to a redirect function.
We also introduce a heuristic to distinguish benign EARs
from vulnerable EARs.

Our tool targets the Ruby language, specifically the Ruby
on Rails web framework. We chose this framework for two
reasons. First, Ruby on Rails is a very popular web frame-
work, thus, there is a large number of open-source Ruby
on Rails web applications available for inspection (e.g., on
GitHub [19]). Second, due to the characteristics discussed
in Section 2.4.1, all EARs present in Rails are silent. Thus,
it is necessary to use a white-box tool to detect EARs in
Ruby on Rails web applications. Again, it is important to
note that redirects originate within the controllers4, thus,
our white-box tool operates specifically on controllers.

3.1 Detection Algorithm
The goal of our EAR detector is to find a path in the

controller’s Control Flow Graph (CFG) that contains both
a call to a redirect method and code following that redirect
method. An overview of our algorithm is given in Figure 1.
The algorithm operates in five steps: (i) generate the CFG

4Redirects can also occur in Rails’ routing, before the re-
quest gets to the controller. However, EARs cannot occur
in this context, because control flow never reaches a con-
troller. Thus, we are not concerned with these redirects.

of the controller; (ii) find redirection methods; (iii) prune
infeasible paths in the CFG to reduce false positives; (iv)
detect EARs by finding a path in the CFG where code is ex-
ecuted after a redirect method is called; (v) use a heuristic
to differentiate between benign and vulnerable EARs.

Step 1: Building the Control Flow Graph

We built our system on top of the Ruby parser presented by
Furr et al. [18]. This parser first compiles Ruby into a subset
of the Ruby language called Ruby Intermediate Language,
or RIL. The purpose of RIL is to simplify Ruby code into an
easier-to-analyze format. The simplification is performed by
removing ambiguities in expressions, reducing Ruby’s four
different branches to one canonical representation, making
method calls explicit, and adding explicit returns. At the
end of the transformation, every statement in RIL is either
a statement with one side effect or a branch. The parser
generates the CFG of RIL.

Due to Ruby’s dynamic nature, this CFG might be in-
complete. In particular, strings containing Ruby code can
be evaluated at run-time using the eval function, object
methods can be dynamically called at run-time using the
send function, and methods can be added to objects at run-
time. We do not address EAR vulnerabilities associated
with these language features. However, we have found that
these features are rarely used in practice (see Section 3.2).

Step 2: Finding Redirection

To detect EARs, we must first find all program paths (from
any program entry to any program exit point) in the CFG
that call the Ruby on Rails method redirect_to. The rea-
son is that we need to check these paths for the presence
of code execution between the redirect call and the program
exit point. Note that intra-procedural analysis is not enough
to find all EARs. Consider the code in Listing 2. Simply
looking in ensure_admin for code execution after the call to
redirect_to and before the end of this method is not suffi-
cient. Thus, we need to perform inter-procedural analysis to
find all possible ways in which code execution can continue
after a redirect_to call until the end of the program.

Our inter-procedural analysis proceeds as follows: we start
by finding all methods that directly call redirect_to. These
methods are added to a set called interesting methods. Then,
for each method in the interesting methods set, we add to
this set all methods that call it. This process is iterated
until a fixpoint is reached, and no new interesting methods
are found.

At this point, every element (method) in interesting meth-
ods can eventually lead to a redirect_to call. Whenever a
call to an interesting method returns, its execution will con-
tinue after the call site in the caller. Thus, all paths from
invocations of redirect_to until the end of the program are
captured by the paths from all invocations (call sites) of in-
teresting methods to the end of the methods that contain
these calls. Now, to detect an EAR, we can simply look for
code that is executed on a path from the call site of an in-
teresting method until the end of the method that contains
this call.

Step 3: Prune Infeasible Paths

Looking for all paths from the redirect_to method to the
program exit point might lead to false positives due to in-
feasible paths. Consider the example in Listing 4. There

1 class UsersController <
ApplicationController

2 def ensure_logged_in
3 if not current_user
4 redirect_to ("/") and return false
5 end
6 @logged_in_users += 1
7 return true
8 end
9

10 def delete_all
11 if not ensure_logged_in ()
12 return
13 User.delete (: all)
14 end
15 end

Listing 4: Example of potential false positive.

are no EARs in this code. The redirect_to on Line 4 will
always return true, thus, return false (also on Line 4) will
execute as well. Because of this, ensure_logged_in will al-
ways return false after performing a redirect. As a result,
the call to ensure_logged_in on Line 11 will always return
false, and the return on Line 12 will always occur.

The CFG for the code in Listing 4 is shown in Figure 2.
With no additional processing, we would incorrectly report
the path from redirect_to on Line 4 to the statement in
Line 6. Moreover, we would also report an EAR because of
the path from the redirect to the User.delete on Line 13.
The first path is denoted as (1) in Figure 2, the second path
as (2).

To prune infeasible paths in the CFG, we explore all paths
that follow an interesting method. If all paths following an
interesting method call return the same Boolean value, we
propagate this Boolean constant to all the call sites of this
method. Then, we recursively continue constant value prop-
agation at all the call sites, pruning infeasible paths every-
where after the interesting method is called. We iteratively
continue this process throughout the CFG; whenever we find
a constant return value, we propagate this return value to
all call sites.

Figure 2 shows the results of performing our pruning pro-
cess on the CFG of Listing 4. Initially, all paths after the
redirect_to in ensure_logged_in do not return the same
Boolean, so we cannot conclude anything about the return
value of ensure_logged_in. However, redirect_to always
returns true. Therefore, we perform constant value propa-
gation on the return value of redirect_to, which is used in
a branch. As a consequence, we can prune all of the paths
that result from the false branch. The edges of this path
are labeled with (1) in Figure 2. Now, all paths from redi-

rect_to return false, which means that ensure_logged_in
will always return false after a redirect. We now per-
form constant value propagation at all the call sites of en-
sure_logged_in, removing all the paths labeled with (2).
At this point, there is nothing more to be pruned, so we
stop. It can be seen that there is no path from redirect_to

to state-changing code (defined in the next step) along the
solid lines.

Step 4: Detecting EARs

Once the CFG of the controller has been simplified and inter-
esting method information has been extracted, we perform
EAR detection. This is a fairly simple process; we traverse

delete_all

tmp = ensure_logged_in()

tmp

ensure_logged_in

User.delete(:all)

 true (2)

return

 false

return

 (2)

current_user

redirect_to("/")

 false

@logged_in_users += 1

 true

return false

 true false (1)

return true

 (1)

 (1)

Figure 2: Control Flow Graph for the code shown in List-
ing 4. The dotted lines are paths removed from the CFG by
Step 3 of the EAR detection algorithm.

the CFG of every method to see if potentially problematic
code can be executed after a call to an interesting method.
We conservatively define such code as any statement that
could possibly modify the program state, excluding state-
ments that alter the control flow. This excludes return and
branches, but includes assignment and method calls. As a
special case, we also disregard all operations that set the
flash or session array variable. These arrays are used in
the former case to set a message to be displayed on the
destination page, and in the latter case to store some infor-
mation in the user’s session. These calls are disregarded be-
cause they do no affect the state of the web application and
are frequently called after redirection. We report as a poten-
tial EAR each method that executes potentially problematic
code between the invocation of an interesting method and
its return statements.

Step 5: Distinguishing Between Benign and Vulner-

able EARs

We also introduce a heuristic to identify vulnerable EARs.
This heuristic looks for paths from an interesting method
to a function that modifies the database. If one is found,
the EAR is marked as vulnerable. We used the Rails doc-
umentation to determine the 16 functions that modify the
database. Of course, this list can be easily extended. This
process is not sound, because we perform no type analysis,
and look only at the method names being called. Moreover,
we do not analyze the models, only looking for this specific
list. Despite these limitations, our results (Section 4.1) show

Type of EAR reported Number reported
Benign 3,089
Vulnerable 855
Total 3,944

Total Projects 18,127
Any EAR 1,173
Only Benign 830
At least one vulnerable EAR 343

Table 1: Results of running the white-box detector against
Ruby on Rails applications, 6.5% of which contained an EAR
flaw. 2.9% of the projects had an EAR classified as vulner-
able.

that this heuristic is still a good indicator of potentially vul-
nerable EARs that deserve the developer’s attention.

3.2 Limitations
The white-box EAR detector is limited to analyzing Ruby

on Rails applications, although the detection algorithm can
be extended to any programming language and web frame-
work. Detection is neither sound nor complete. False neg-
atives can occur when a Rails application uses Ruby’s dy-
namic features such as eval or send to execute a redirect.
While such dynamic features are used extensively in the
Ruby on Rails framework itself, they are rarely used by web
applications written in Rails. Of the 3,457,512 method calls
in controllers that we tested our tool on, there were 428
(0.012%) eval method calls and 2,426 (0.07%) send method
calls, which shows how infrequently these are used in Rails
web applications.

The white-box tool can report two types of false positives:
false EARs, that is, the tool reports an EAR although no
code can be executed after a redirect, or false vulnerable
EARs, where the tool mistakes a benign EAR as vulnerable.

False EARs can occur for several reasons. One reason is
that the path from the redirect function to the code execu-
tion that we found is infeasible. A typical example is when
the redirect call and the code execution occur in opposite
branches. The branch conditions for these are mutually ex-
clusive, so there can never be a path from the redirect call to
the code execution. Examples of this type of false positive
are discussed in Section 4.1, and these could be mitigated
by introducing better path sensitivity.

False vulnerable EARs are a problem caused by the heuris-
tic that we use. The biggest issue is that we simply look for
method calls that have the same name as method calls that
update/change the database. However, we do not perform
any type analysis to determine the object that the method
is called on. Thus, methods such as delete on a hash table
will trigger a false vulnerable EAR, since delete is also a
method of the database object. Improved heuristics could be
developed, for instance, that include the type of the object
the method is being invoked on.

Despite these limitations, our experiments demonstrate
that the tool works very well in practice. In addition, Ruby
on Rails controllers are typically very small, as most appli-
cation logic is present in the models. Thus, our tool works
very well on these types of controllers. We provide5 our
tool to the community at large, so that others may use it to
detect EARs in their code.

5https://github.com/adamdoupe/find_ear_rails

Classification after manual analysis Number
True Vulnerable EARs 485
Benign EARs 325
No EARs (False Positives) 45

Table 2: Results of manually inspecting the 855 vulnerable
EARs reported by our white-box tool. 40.1% were benign,
and 5.3% were not EARs.

4. RESULTS
We used our EAR detection tool to find real-world EARs

in open-source Ruby on Rails web applications. First, we
downloaded 59,255 open-source projects from GitHub [19]
that were designated as Ruby projects and that were not a
fork of another project. We identified 18,127 of the down-
loaded Ruby projects that had an app/controllers folder,
indicating a Ruby on Rails application.

Table 1 summarizes the results. In total, we found 3,944
EAR instances in 1,173 projects. 855 of these EARs, present
in 343 projects, were classified as vulnerable by our system.
This means that 6.5% of Rails applications we tested con-
tained at least one EAR, and 29.3% of the applications con-
taining EARs had an EAR classified as vulnerable.

Of the 1,173 projects that contained at least one EAR, we
notified those project owners that had emails listed in their
GitHub profile, for a total of 624. Of these project owners,
107 responded to our email. Half of the respondents, 49,
confirmed the EARs we reported. 26 other respondents told
us that the GitHub project was no longer being maintained
or was a demo/toy. Three respondents pointed out false
positives, which we confirmed, while 6 of the project own-
ers said that there were not going to fix the EAR because
there was no security compromise. The rest of the responses
thanked us for the report but did not offer a confirmation of
the reported EAR.

4.1 Detection Effectiveness
To determine the effectiveness of our tool, we manually

inspected all 855 vulnerable EARs. The results are shown
in Table 2. We manually verified that 485, or 59.9%, were
true positives. Many of these were caused by ad-hoc au-
thorization checks, where the developer simply introduced
a redirect when the check failed. Some examples of secu-
rity violations were allowing non-administrators access to
administrator functionality, allowing modifications to items
not belonging to the current user, and being able to sign up
for a conference even though it was full.

Listing 5 shows an interesting example adapted from a real
EAR where the redirect is followed by and return (Line 3),
however, due to Ruby’s semantics, this code contains an
EAR. In Ruby, a return with no arguments returns false6,
thus, redirect_to_login will always return false (because
of the “no argument” return call on Line 3). The result is
that the return on Line 8 will never be executed, because
redirect_to_login will always return false, and the short-
circuit logic of and will cause Line 10 to be executed. This
example shows that our tool discovers non-obvious EARs.

For vulnerable EARs, we consider two different types of
false positives: false vulnerable EARs, which are benign

6Technically nil, but nil and false are equivalent for
Boolean comparisons.

https://github.com/adamdoupe/find_ear_rails

1 class BanksController <
ApplicationController

2 def redirect_to_login
3 redirect_to ("/login") and return
4 end
5
6 def create
7 if not current_user .is_admin ?
8 redirect_to_login () and return
9 end

10 @bank = Bank .create(params[: bank])
11 end
12 end

Listing 5: True positive Execution After Redirect
vulnerability in Ruby on Rails.

EARs mistakenly reported as vulnerable, and false EARs
(false positives).

As shown in Table 2, the white-box tool generated 45 false
EARs, for a false positive rate of 5.3%. These false positives
came from two main categories. About half of the false posi-
tives were due to impossible paths from the redirect methods
to some code. An example of this is when a redirect method
was called at the end of a branch that checked that the re-
quest was an HTTP GET, while the code executed after a
redirect was in a branch that checked that the request was
an HTTP POST. These two conditions are mutually exclu-
sive, thus, this path is impossible. The other half of false
positives were due to local variables that had the same name
as a redirect method. The parsing library, RIL, mistakenly
identified the local variable access as a method call to a redi-
rect method. We are currently looking into fixing this issue
in RIL, which will almost halve our false positive rate.

While our false EAR rate was only 5.5%, our vulnerable
EAR detection heuristic had a higher false detection rate of
40.1%. The biggest culprit for false vulnerable EARs (72.9%
of the instances) was due to no feasible path from the redi-
rect to the method that changed the state of the database.
For instance, the redirect method occurred in a branch that
was taken only when a certain object was nil7. Later, the
database method was called on this object. Thus, when the
redirect happens, the object will be nil. Because of the pres-
ence of an EAR flaw, execution will continue and reach the
database access method. However, since the object is nil,
the database will not be affected. Because our heuristics
cannot detect the fact that, after the redirect, the database
function will always be called with a nil object, we report
a vulnerability. The other common false vulnerable EAR
were instances where the redirect method was called before
code was executed, however, it was clear that the developer
was fully aware of the redirect semantics and intended for
the code to be executed.

We also checked that the false EAR rate did not differ
significantly among the benign EARs by manually inspect-
ing 200 random EARs reported as benign. We saw 13 false
EARs in the manual inspection, for a false positive rate of
6.5%. Thus, the total false positive rate among the instances
we manually inspected is 5.5%. We also did not see any vul-
nerable EARs among the benign EARs, thus, we did not see
any false negative vulnerable EARs in our experiments.

7nil is Ruby’s null

From our results, we can conclude that we detect EARs
well. However, it is more difficult to distinguish between
benign and vulnerable EARs. Classification could be im-
proved by using a better heuristic to detect intended redi-
rects. However, even though certain EARs might not be
vulnerable at the moment, they are still programming er-
rors that should be fixed. This is confirmed by the responses
that we received from developers who were grateful for error
reports even though they are not exploitable at the moment.
Also, our tool reports one true vulnerability for every benign
EAR mistakenly classified as vulnerable. This is well in line
with the precision of previous static analysis tools [24,25,28].

4.2 Performance
To evaluate the performance of our tool, we measured the

running time against the 18,127 Ruby on Rails applications.
We ran our experiments on an Intel Core i7 with 12 gigabytes
of RAM. Our algorithm scales linearly with the size of the
CFG and is fast; no project took longer than 2.5 seconds
even with the largest CFG size of 40,217 statements.

5. PREVENTION
The old adage “an ounce of prevention is worth a pound

of cure” is true in software. Boehm showed that the later
in an application’s life-cycle bugs are caught, the more ex-
pensive they are to fix [8]. Thus, preventing certain types
of bugs from even being introduced is attractive from both
an economic standpoint, and a security perspective. Our
recommendation to web frameworks, therefore, is to make
Execution After Redirect vulnerabilities impossible to oc-
cur, by having every invocation of the redirect method halt
execution, which we call halt-on-redirect behavior.

As we have shown in Section 2.4, some frameworks have
already either adopted the approach of making EARs im-
possible, or their approach to generating HTTP responses
makes EARs highly unlikely. For existing frameworks that
wish to decrease the chance of EARs being introduced, such
draconian measures may not be acceptable because they
break backward-compatibility. Our suggestion in these cases
is to make an application-wide setting to enable halt-on-
redirect behavior, along with an argument to the redirect
function to halt execution after the redirect. Of course, we
suggest making halt-on-redirect the default behavior, how-
ever each framework will have to properly balance security
and backward-compatibility.

To improve the security of Ruby on Rails, we are in discus-
sions with the Rails development team about our proposed
change. The difficulty with implementing halt-on-redirect
behavior in Rails is that there are no gotos, and Rails appli-
cations run in a single-threaded context. This limits the two
obvious forms of implementing halt-on-redirect: we cannot
use a goto or language equivalent statement to jump from
the end of the redirect_to method to the code after the
controller is called. Moreover, we also cannot, at the end
of the redirect_to method, send the HTTP response and
cause the current thread to stop execution. PHP frameworks
can use the exit function to implement halt-on-redirect be-
havior, because each request spawns a new PHP process.

Our proposed solution is to throw a new type of exception,
RedirectOccuredException, at the end of the redirect_to
body. In the Ruby on Rails framework core, where the con-
troller is called, there is a catch block for this exception.
While this will prevent almost all EARs, there is a possi-

bility for code to be executed in an ensure block, Ruby’s
equivalent of a “finally” block. Code in this block will be ex-
ecuted regardless of a redirect. However, we believe this is
semantically in line with the way the language should work:
ensure blocks will always be executed, no matter what hap-
pens, and this is clear to the programmer via the language’s
semantics.

6. RELATED WORK
Specific instances of Execution After Redirect vulnera-

bilities have been previously identified. Hofstetter wrote a
blog post alerting people to not forget to exit after a redi-
rect when using the PHP framework CakePHP [22]. This
discussion resulted in a bug being filed with the CakePHP
team [9]. This bug was resolved by updating the CakePHP
documentation to indicate the redirect method did not end
execution [10].

Felmetsger et al. presented a white-box static analysis tool
for J2EE servlets to automatically detect logic flaws in web
applications. The tool, Waler, found Execution After Redi-
rect vulnerabilities in a web application called Global In-
ternship Management System (GIMS) [17]. However, nei-
ther Felmetsger nor Hofstetter identified EARs as a systemic
flaw among web applications.

Wang et al. manually discovered logic flaws in the interac-
tion of Cashier-as-a-Service (CaaS) APIs and the web appli-
cations that use them [35]. This is interesting because there
is a three-way interaction between the users, the CaaS, and
the web application. In our work, we consider one specific
type of logic flaw across many applications.

Our white-box EAR detection tool uses the Ruby Inter-
mediate Language (RIL) developed by Furr et al. [18]. RIL
was used by An et al. to introduce static typing to Ruby on
Rails [23]. They use the resulting system, DRails, on eleven
Rails applications to statically discover type errors. DRails
parses Rails applications by compiling them to equivalent
Ruby code, making implicit Rails conventions explicit. This
differs from our tool, which operates directly on the Rails
application’s control flow graph. Moreover, we are looking at
a specific logic flaw, while DRails is looking for type errors.

Chaudhuri and Foster built a symbolic analysis engine on
top of DRails, called Rubyx [13]. They are able to analyze
the security properties of Rails applications using symbolic
execution. Rubyx detected XSS, XSRF, session manipu-
lation, and unauthorized access in the seven applications
tested. Due to the symbolic execution and verifying of path
conditions, false positives are reduced. However, Rubyx re-
quires the developer to manually specify an analysis script
that defines invariants on used objects, as well as the se-
curity requirements of the applications. Our tool, on the
other hand, operates on raw, unmodified Rails applications,
and does not require any developer input. This is due to
the different focus; we are focusing on one specific type of
flaw, while Rubyx is broader and can verify different types
of security violations.

Our work is also related to numerous white-box tools that
have previously been published. Huang et al. were one
of the first to propose a static analysis tool for a server-
side scripting language, specifically PHP. They implemented
taint propagation to detect XSS, SQL injection, and general
injection [24]. Livshits and Lam proposed a static analysis
technique for Java web applications that used points-to anal-
ysis for improved precision [28]. Their tool detected 29 in-

stances of SQL injection, XSS, HTTP response splitting, and
command injection in nine open-source applications. Jo-
vanovic et al. developed Pixy, an open-source static analysis
tool to discover XSS attacks by performing flow-sensitive,
inter-procedural, and context-sensitive data flow analysis
on PHP web applications [26]. They later improved Pixy,
adding precise alias analysis, to discover hundreds of XSS
vulnerabilities in three PHP applications, half of which were
false positives [25]. Balzarotti et al. used static and dynamic
analysis to develop MiMoSa, a tool that performs inter-
module data flow analysis to discover attacks that leverage
several modules, such as stored XSS. They found 27 data
flow violations in five PHP web applications [4].

All of these static analysis tools differ from our white box
tool because we are not looking for unsanitized input vul-
nerabilities, but rather for unexpected execution that a de-
veloper did not intend. We also performed our analysis on
a large corpus of real-world applications, and found a corre-
spondingly large number of true vulnerable EARs.

7. CONCLUSIONS
We have described a new type of vulnerability, Execution

After Redirect, and developed a novel static analysis tool to
effectively find EARs. We showed that EARs are difficult to
differentiate between benign and vulnerable. This difficulty
is due to vulnerable EARs violating the specific logic of the
web application. Better understanding of the application’s
logic should help differentiate vulnerable and benign EARs
and it will be the focus of future work.

Acknowledgments

This work was also partially supported by the ONR under
grant N000140911042 and by the National Science Founda-
tion (NSF) under grants CNS-0820907, CNS-0905537, and
CNS-0716095.

8. REFERENCES

[1] ASP.NET MVC. http://www.asp.net/mvc.

[2] Balduzzi, M., Egele, M., Kirda, E., Balzarotti,
D., and Kruegel, C. A Solution for the Automated
Detection of Clickjacking Attacks. In Proceedings of
the ACM Symposium on Information, Computer and
Communications Security (AsiaCCS) (Beijing, China,
April 2010).

[3] Balduzzi, M., Gimenez, C., Balzarotti, D., and
Kirda, E. Automated discovery of parameter
pollution vulnerabilities in web applications. In
Proceedings of the 18th Network and Distributed
System Security Symposium (2011).

[4] Balzarotti, D., Cova, M., Felmetsger, V. V.,
and Vigna, G. Multi-module vulnerability analysis of
web-based applications. In Proceedings of the 14th
ACM conference on Computer and communications
security (New York, NY, USA, 2007), CCS ’07, ACM,
pp. 25–35.

[5] Barth, A., Jackson, C., and Mitchell, J. C.
Robust defenses for cross-site request forgery. In
Proceedings of the 15th ACM Conference on Computer
and Communications Security (CCS 2008) (2008).

[6] Boe, B. UCSB’s International Capture The Flag
Competition 2010 Challenge 6: Fear The EAR.

http://www.asp.net/mvc

http://cs.ucsb.edu/~bboe/r/ictf10, December
2010.

[7] Boe, B. Using StackOverflow’s API to Find the Top
Web Frameworks. http://cs.ucsb.edu/~bboe/r/
top-web-frameworks, February 2011.

[8] Boehm, B. W. Software Engineering Economics,
1st ed. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1981.

[9] Include exit with a redirect call. http://replay.web.
archive.org/20061011152124/https://trac.

cakephp.org/ticket/1076, August 2006.

[10] docs should mention redirect does not ”exit” a script.
http://replay.web.archive.org/20061011180440/

https://trac.cakephp.org/ticket/1358, August
2006.

[11] Cake Software Foundation, Inc. The CakePHP
1.3 Book. http://book.cakephp.org/view/982/
redirect, 2011.

[12] Carettoni, L., and Di Paola, S. HTTP Parameter
Pollution. OWASP AppSec Europe 2009, May 2009.

[13] Chaudhuri, A., and Foster, J. Symbolic security
analysis of ruby-on-rails web applications. In
Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS’10) (2010), ACM,
pp. 585–594.

[14] Childers, N., Boe, B., Cavallaro, L., Cavedon,
L., Cova, M., Egele, M., and Vigna, G.
Organizing large scale hacking competitions. In
Proceedings of the 7th international conference on
Detection of intrusions and malware, and vulnerability
assessment (Berlin, Heidelberg, 2010), DIMVA’10,
Springer-Verlag, pp. 132–152.

[15] Django Software Foundation. Django shortcut
functions. http://docs.djangoproject.com/en/dev/
topics/http/shortcuts/#django.shortcuts.

redirect, 2011.

[16] EllisLab, Inc. CodeIgniter User Guide Version 2.0.2.
http://codeigniter.com/user_guide/helpers/url_

helper.html, 2011.

[17] Felmetsger, V., Cavedon, L., Kruegel, C., and
Vigna, G. Toward Automated Detection of Logic
Vulnerabilities in Web Applications. In Proceedings of
the USENIX Security Symposium (Washington, DC,
August 2010).

[18] Furr, M., hoon (David) An, J., Foster, J. S.,
and Hicks, M. The Ruby intermediate language. In
Proceedings of the ACM SIGPLAN Dynamic
Languages Symposium (DLS) (Oct. 2009).

[19] GitHub. http://github.com.

[20] Indictment in U.S. v. Albert Gonzalez. http://www.
justice.gov/usao/ma/news/IDTheft/Gonzalez,

%20Albert%20-%20Indictment%20080508.pdf, August
2008.

[21] Hansen, R. Clickjacking. http://ha.ckers.org/
blog/20080915/clickjacking/, September 2008.

[22] Hofstetter, D. Don’t forget to exit after a redirect.
http://cakebaker.wordpress.com/2006/08/28/

dont-forget-to-exit-after-a-redirect/, August
2006.

[23] hoon An, J., Chaudhuri, A., and Foster, J.
Static typing for ruby on rails. In Proceedings of the

24th IEEE/ACM Conference on Automated Software
Engineering (ASE’09) (2009), IEEE, pp. 590–594.

[24] Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H.,
Lee, D.-T., and Kuo, S.-Y. Securing web
application code by static analysis and runtime
protection. In Proceedings of the 13th international
conference on World Wide Web (New York, NY, USA,
2004), WWW ’04, ACM, pp. 40–52.

[25] Jovanovic, N., Kruegel, C., and Kirda, E. Pixy:
A static analysis tool for detecting web application
vulnerabilities (short paper). In IN 2006 IEEE
SYMPOSIUM ON SECURITY AND PRIVACY
(2006), pp. 258–263.

[26] Jovanovic, N., Kruegel, C., and Kirda, E.
Precise alias analysis for static detection of web
application vulnerabilities. In Proceedings of the 2006
workshop on Programming languages and analysis for
security (New York, NY, USA, 2006), PLAS ’06,
ACM, pp. 27–36.

[27] Klein, A. Divide and conquer: HTTP response
splitting, Web cache poisoning attacks, and related
topics. http://www.packetstormsecurity.org/
papers/general/whitepaper/httpresponse.pdf,
2004.

[28] Livshits, V. B., and Lam, M. S. Finding security
vulnerabilities in java applications with static analysis.
In Proceedings of the 14th conference on USENIX
Security Symposium - Volume 14 (Berkeley, CA, USA,
2005), USENIX Association, pp. 18–18.

[29] Open Web Application Security Project
(OWASP). OWASP Top Ten Project. http://www.
owasp.org/index.php/Top_10, 2010.

[30] Ortiz, C. Outcome of sentencing in U.S. v. Albert
Gonzalez. http://www.justice.gov/usao/ma/news/
IDTheft/09-CR-10382/GONZALEZ%20website%20info

%205-11-10.pdf, March 2010.

[31] R. Fielding, J. Gettys, J. M. H. F. L. M. P. L.
T. B.-L. RFC 2616: Hypertext Transfer Protocol –
HTTP/1.1 Header Field Definitions. http://www.w3.
org/Protocols/rfc2616/rfc2616-sec14.html#

sec14.30, June 1999.

[32] R. Fielding, J. Gettys, J. M. H. F. L. M. P. L.
T. B.-L. RFC 2616: Hypertext Transfer Protocol –
HTTP/1.1 Status Code Definitions. http://www.w3.
org/Protocols/rfc2616/rfc2616-sec10.html, June
1999.

[33] Reenskaug, T. Models - views - controllers. Tech.
rep., Xerox Parc, 1979.

[34] SpringSource. Contollers - Redirects. http://www.
grails.org/Controllers+-+Redirects, 2010.

[35] Wang, R., Chen, S., Wang, X., and Qadeer, S.
How to shop for free online - security analysis of
cashier-as-a-service based web stores. In Proceedings of
the 32nd IEEE Symposium on Security and Privacy
(Oakland, CA, May 2011), IEEE.

[36] Zend Technologies Ltd. Zend Framework:
Documentation: Action Helpers - Zend Framework
Manual. http://framework.zend.com/manual/en/
zend.controller.actionhelpers.html#zend.

controller.actionhelpers.redirector, 2011.

http://cs.ucsb.edu/~bboe/r/ictf10
http://cs.ucsb.edu/~bboe/r/top-web-frameworks
http://cs.ucsb.edu/~bboe/r/top-web-frameworks
http://replay.web.archive.org/20061011152124/https://trac.cakephp.org/ticket/1076
http://replay.web.archive.org/20061011152124/https://trac.cakephp.org/ticket/1076
http://replay.web.archive.org/20061011152124/https://trac.cakephp.org/ticket/1076
http://replay.web.archive.org/20061011180440/https://trac.cakephp.org/ticket/1358
http://replay.web.archive.org/20061011180440/https://trac.cakephp.org/ticket/1358
http://book.cakephp.org/view/982/redirect
http://book.cakephp.org/view/982/redirect
http://docs.djangoproject.com/en/dev/topics/http/shortcuts/#django.shortcuts.redirect
http://docs.djangoproject.com/en/dev/topics/http/shortcuts/#django.shortcuts.redirect
http://docs.djangoproject.com/en/dev/topics/http/shortcuts/#django.shortcuts.redirect
http://codeigniter.com/user_guide/helpers/url_helper.html
http://codeigniter.com/user_guide/helpers/url_helper.html
http://github.com
http://www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-%20Indictment%20080508.pdf
http://www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-%20Indictment%20080508.pdf
http://www.justice.gov/usao/ma/news/IDTheft/Gonzalez,%20Albert%20-%20Indictment%20080508.pdf
http://ha.ckers.org/blog/20080915/clickjacking/
http://ha.ckers.org/blog/20080915/clickjacking/
http://cakebaker.wordpress.com/2006/08/28/dont-forget-to-exit-after-a-redirect/
http://cakebaker.wordpress.com/2006/08/28/dont-forget-to-exit-after-a-redirect/
http://www.packetstormsecurity.org/papers/general/whitepaper/httpresponse.pdf
http://www.packetstormsecurity.org/papers/general/whitepaper/httpresponse.pdf
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.justice.gov/usao/ma/news/IDTheft/09-CR-10382/GONZALEZ%20website%20info%205-11-10.pdf
http://www.justice.gov/usao/ma/news/IDTheft/09-CR-10382/GONZALEZ%20website%20info%205-11-10.pdf
http://www.justice.gov/usao/ma/news/IDTheft/09-CR-10382/GONZALEZ%20website%20info%205-11-10.pdf
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.grails.org/Controllers+-+Redirects
http://www.grails.org/Controllers+-+Redirects
http://framework.zend.com/manual/en/zend.controller.actionhelpers.html#zend.controller.actionhelpers.redirector
http://framework.zend.com/manual/en/zend.controller.actionhelpers.html#zend.controller.actionhelpers.redirector
http://framework.zend.com/manual/en/zend.controller.actionhelpers.html#zend.controller.actionhelpers.redirector

	Introduction
	Overview of EARs
	EAR History
	EARs as Logic Flaws
	Types of EARs
	Framework Analysis
	Ruby on Rails 3.0.5
	Grails 1.3.7
	Django 1.2.5
	ASP.NET MVC 3.0
	Zend Framework 2.3
	CakePHP 1.3.7
	CodeIgniter 2.0.0
	J2EE 1.4
	Struts 2.2.3

	EAR Security Challenge

	EAR Detection
	Detection Algorithm
	Limitations

	Results
	Detection Effectiveness
	Performance

	Prevention
	Related Work
	Conclusions
	References

