
Computational Thinking for Physics: Programming Models
of Physics Phenomenon in Elementary School

Hilary Dwyer*, Bryce Boe†, Charlotte Hill†, Diana Franklin†, & Danielle Harlow*

*Gevirtz Graduate School of Education, University of California, Santa Barbara, CA 93106-9490
†Department of Computer Science, University of California, Santa Barbara, CA 93106-5110

Abstract. Computational thinking, an approach to problem solving, is a key practice of science education rarely
integrated into instruction in an authentic way. A second key practice, creating models of physical phenomenon, has
been recognized as an important strategy for facilitating students' deeper understandings of both science concepts and
the practices of science. We are creating an interdisciplinary computational thinking curriculum for grades 4-6 that
combines the development of computational thinking with content in other disciplines such as science. Here we present
an example project where students can iteratively develop a model to explain the momentum and acceleration of an
object, coupled with sophisticated computational thinking concepts to simulate that model. In addition, we present two
findings from related research on fourth graders’ pre-instructional knowledge related to computational thinking: 1)
Students recognized the need for but struggled to produce specific instructions, and 2) Students understood that small
errors could change outcomes.

Keywords: Physics Education Research, Computational Thinking, Elementary School Education.
PACS: 1.40.-d, 1.40.eg, 1.40.Fk, 1.40.G-, 1.50.H-

INTRODUCTION

The Next Generation Science Standards [1]
integrates science content with eight key practices of
science and engineering. The intention is K-12
students will be expected to not only learn about these
practices, but also learn science content through these
practices. Two practices key to this project are (1)
Mathematical and Computational Thinking and (2)
Developing and Using Models.

The Computer Science Teachers Association
(CSTA) defines computational thinking as “an
approach to solving problems that can be implemented
with a computer. … Computational thinking includes
“abstraction, recursion, and iteration, to process and
analyze data, and to create real and virtual artifacts”
[2]. Computational thinking, however, is not limited to
work on a computer. It is a method of problem solving
useful across disciplines, including physics.

In this project, we are developing a set of activities
for children in grades 4-6 that will support students’
science learning by developing and using models while
developing computational thinking. Along with this,
we are developing an empirically-based learning
progression for computational thinking.

We have long recognized that students come into
instruction with many ideas about science from their
everyday interactions with the real world [3]. For
example, we know that young children articulate that

things slow down because “force runs out” [4], an idea
counter to the accepted scientific explanation but
consistent with their everyday observations. To help
children develop understandings aligned with
scientific ideas, we need to be cognizant of children’s
existing interpretations of their observations.

Thus, to help children develop computational
thinking, we must be aware of their existing ideas and
related experiences. Unfortunately, we know very little
about children’s notions and skills related to
computational thinking [5]. Thus, as a first step toward
developing curriculum, we are investigating children’s
notions about computational thinking developed prior
to formal instruction in this area.

Here, we present an example activity that engages
students in developing and using a model of a physics
phenomenon and discuss computational thinking. We
then describe our research design and present initial
findings about fourth grade students’ pre-instructional
ideas related to three aspects of computational
thinking.

MODELING, COMPUTATIONAL
THINKING, AND PROGRAMMING

As an example activity, consider students engaged
in dropping objects of different masses onto a seesaw
that then projects another object up. After making
observations of such real life objects in a lab setting,

 , edited by Engelhardt, Churukian, and Jones; Peer-reviewed, doi:10.1119/perc.2013.pr.021
 Published by the American Association of Physics Teachers under a Creative Commons Attribution 3.0 license.
 Further distribution must maintain attribution to the article’s authors, title, proceedings citation, and DOI.

 2013 PERC Proceedings

133

students could develop a computer program (or
simulation) that models the behavior of the launched
object in response to the mass of the dropped object.
To create a program which mimics the real life
observations, a student would need to consider
whether and how the mass of the falling object was
related to the rate at which the object fell, the
maximum height of the launched object, as well as
whether the deceleration of the launched object as it
traveled upwards is the same as the acceleration of the
object as it falls back down, and other factors. The
student could then write a program that would animate
objects to match their observations.

While programming activities have been used to
assess students’ understanding of science ideas [6] and
help students model science phenomenon [7,8], the
difficulty of programming can limit its usefulness [9].
Several graphical programming interfaces have been
developed that allow novices to more easily engage in
authentic programming and computational thinking
activities. Scratch [10] is one such graphical
programming interface that lowers the cognitive
barriers to programming by removing the possibility of
making syntax errors. When programming in Scratch,
users select blocks and drag them onto the
programming area, creating scripts associated with
agents (called sprites) and the background.

Returning to the example activity described above,
Figure 1 shows three screen shots at sequential time
points of a possible animation using the Scratch
programming environment showing a rock falling on a
seesaw and projecting a person up. Three rocks of
different masses can be dropped on the seesaw. The
left column shows sample scripts (programs) that a
student might write to animate the man. This script
shows that the man would travel upwards to different
heights (different values of y) depending on the rock.
However, as this program is written, the man moves at
a constant velocity. Gravity is not accounted for. In
this way the animation models some aspects of
observations but is limited in others.

In such an activity, students must first develop a
conceptual model of the physical phenomenon and
identify all relevant variables and the relationship
among these variables. They then must translate these
ideas into a computer simulation using precise
language. Observing the results of their simulation
allows them to assess how well their model matches
reality and iterate their model until it is a reasonable
representation. This process involves two key concepts
in computational thinking: abstraction (identifying
only relevant variables) and programming (using
sequential execution and message passing).

FIGURE 1. Left shows sample script for one sprite (the
projected man) of an animation. The right shows three
sequential screenshots of the stage of an animation.

RESEARCH DESIGN

The results we report here are part of a larger
project designed to develop a learning progression
about computational thinking for grades 4-6. This
learning progression will inform our curriculum
development. A learning progression consists of a
lower anchor describing learners’ pre-instructional
ideas, an upper anchor point describing goals, and
several intermediate levels.

Hypothesized Learning Progression. We began
with a hypothesized learning progression of how ideas
would develop over time with appropriate curriculum.
This learning progression will be iteratively revised as
the project progresses. Our first stage was to test the
lower anchor point, i.e., those ideas we expected
fourth graders to develop prior to formal instruction.

Our hypothesized learning progression included six
strands aligned with aspects of computational thinking
described by the CSTA: Abstractions, Knowledge
about algorithms, Algorithms, Data, Knowledge about
how computers work, and Programming. For each
strand we proposed three to eight smaller ideas of
incrementally higher sophistication. These were based
on the CSTA standards [2]. The lowest level for the
Algorithms (Al) and Knowledge of how computers
work (KC), were,

Al-1: Develop one algorithm - Create step-by-step
instructions for an age-appropriate task.
KC-1: Computers have a very limited vocabulary, so you
have to learn how to tell them what to do.
These ideas are both important not only for the

strands they are listed in, but also for the programming
strand. The lowest idea in programming is

P-1: Create step-by-step instructions for an age-
appropriate task for someone who is younger than you
who has limited vocabulary.

134

P-1 builds on Al-1 and KC-1 because it includes
both the idea of step-by step instructions (Al-1) and
the idea of limited vocabulary (KC-1).

Data Collection and Analysis. We conducted
fifteen focus group interviews with fourth graders
(N=55) at four elementary schools in California during
May 2013. To obtain a representative sample, we
selected participants from schools with a wide range of
academic performance and backgrounds among
students. We interviewed all students whose parents
returned signed consent forms. The percentage of
English Language Learners (ELL) ranged from 22% to
81% and students receiving free or reduced lunch
ranged from 29% to 100%.

Each focus group interview lasted approximately
30 minutes and was filmed. The interviews included
three topics (knowledge about computers, complex
decisions, and sequential procedures), and ended with
one of four activities designed to elicit ideas related to
aspects of computational thinking.

Here we focus on the six focus group interviews in
which the students (N=23) participated in the drawing
activity. The drawing activity was based on an activity
in CS Unplugged called Marching Orders [11], where
students were given a picture and then asked to give
instructions to another student, who was to draw the
picture based on the directions.

We adapted the activity in the following ways.
First, we did the activity in three rounds, each
progressively more difficult. In the first round, the
picture was simple: a circle, square, and triangle
vertically arranged and touching. In the second, the
picture was a square with lines bisecting different
sections. In the final round, the picture included shapes
and wavy lines, haphazardly organized. We also
adapted the activity so that students participated in
different ways during each round. In the first two
rounds, one student gave directions to the other
students. In the third round, students worked together
and created directions for the interviewer, who would
draw a picture based on their description.

The discussion from this activity in the six groups
was transcribed, and we assigned pseudonyms to all
participants and schools. We analyzed these segments
for discourse that supported or challenged our
proposed model. Text was coded by its connection to
the hypothesized learning progressions.

FINDINGS

Finding 1: Fourth graders recognized the need for
specific instructions but struggled to produce them.

As described above, we hypothesized that fourth

graders could create step-by-step instructions. This

idea is related to two areas of computational thinking:
algorithms and programming. Participants recognized
when others’ instructions were vague and provided
suggestions to amend the instructions, but they
struggled to produce specific instructions themselves.
In the drawing activity, many students described
shapes and explained directions with their hands or
metaphors; however, they did not include details such
as location, position, size, or pattern required to enable
someone else to reproduce the drawing.

For example, in the first round of the drawing
activity, students were asked to give directions for a
simple picture: a circle, square, and triangle where
each shape abuts another vertically. José described the
picture as a series of shapes, but did not specify size or
position of the shapes. This information was important
to include because the triangle could be oriented in a
number of ways and the shapes could be spaced apart.

José: There’s a circle on the top.
Interviewer: So we’re going to draw a circle on top.
José: There’s a triangle – there’s a square in the
middle. There’s a triangle at the bottom.

This type of description was common. Fourth graders
easily identified shapes and described how the shapes
were aligned with respect to each other, but often left
out crucial information such as size or position. For
instance, José did not describe whether the shapes
were touching, the triangle’s orientation, or the size of
the shapes.

In terms of receiving directions, the fourth graders
did replicate pictures from the directions of their peers
in all three rounds. When asked, they also recognized
how the directions could be improved to more
accurately replicate the picture. For instance, Victor
and Angel shared that José could have specified that
the shapes “connected.”

Interviewer: What are some things that José could
have said that might have made your pictures look
more like [the original] picture?
Victor: To connect them, connect the shapes.
Interviewer: How would you have said it then?
Victor: There’s a circle, a square, and a triangle.
Angel: [overlap] Between the middle and the tops.

Here, Victor described that had José included more
information such as connecting the shapes, he could
have drawn the picture more accurately.

That fourth graders lacked specificity when giving
direction was an important preliminary finding.
Recognizing the need for and critique of step-by-step
instructions appeared to be an anchor point below our
lowest anchor point in two strands of our hypothesized
learning progression: algorithms and programming
(Al-1 and P-1).

Finding 2: Fourth graders recognized that small
errors could change outcomes.

135

We hypothesized that fourth graders would know
that computers have a very limited vocabulary.
Preliminary results suggested that while our
participants were not aware of computers having a
limited vocabulary, they did relate instances where
small deviances from what was “allowed” by a
program resulted in errors. From this, we inferred that
fourth graders knew that they must communicate in
specific ways for a computer (or program) to work
properly.

For example, Jess recognized that in a typing
program used at her school, the difference between “j”
and “J” resulted in different outcomes:

Interviewer: So the whole point [of the drawing
activity we just did] is that when we’re playing with
computers and we’re typing, the computer needs
really specific directions right?
Jess: Right, like I – I put like – in Mavis Beacon
even if like put j-k-j and it was supposed to be J-
capital J.

Jess connected a statement about how computers need
specific directions to mistakes she had made with a
typing program.

In a second example, Henry came to a similar
conclusion. After the interviewer explained that the
purpose of the drawing activity was to demonstrate
that computers need specific directions, Henry noted
that even small errors such as “one wrong number”
might change the outcome.

Interviewer: So the reason that we’re doing this is
because when you’re working with computers, you
have to give really precise directions right?
Henry: Oh! Computer programmer?
Interviewer: And it’s actually really, really hard –
Henry: You do like one wrong number – you do 1
instead of 0 the whole thing [is wrong]

Just as Jess recognized the importance of
distinguishing “J” and “j” for the typing program,
Henry recognized that for computer programmers if
they use “1” instead of “0”, the computer may not do
what the user expects.

These two examples suggested that some fourth
graders enter the classroom with a knowledge that
people need to use specific language to communicate
with computers; however, they did not suggest that
computers have a limited vocabulary. This was a
subtle but important difference. While the students did
not volunteer that computers had their own language,
they did recognize that there were ineffective ways to
communicate. Thus, preliminary evidence suggested
that students understand that small errors (a single
character) could change the outcome, an idea below
the lowest anchor point of the strand Understanding
how computers work in our hypothesized learning
progression (CW-1).

DISCUSSION AND IMPLICATIONS

Children develop ideas relevant to learning
computational thinking through their rich everyday
experiences engaging in problem solving and decision
making as well as interacting with computers and
media. Understanding their existing ideas will help us
build meaningful and relevant curriculum that
integrates computational thinking with other content
areas. We think that using computational thinking and
programming as tools for students to develop, use, and
iterate models of science phenomenon they observe is
a particularly powerful method of learning physics.

Our preliminary findings described students’
computational thinking prior to instruction. Both
findings presented here allowed us to describe anchor
points lower than those in our proposed learning
progression. This will contribute to our first revision of
the learning progression. Also, our findings have
implications for how we design the curriculum. Our
activities will be developed with this understanding of
students’ prior knowledge.

As our project progresses we will collect data to
understand how elementary students’ computational
thinking develops over several years of instruction and
how such thinking co-develops with science concepts,
and ideas about building and using science models.

ACKNOWLEDGMENTS

This research was supported by NSF grants CNS-
1240985 and CNS-0940491. We thank the
participating teachers and students.

REFERENCES

1. Next Generation Science Standards, available online at
nextgenscience.org

2. Computer Science Task Force, CSTA K-12 Computer
Science Standards, 2011.

3. R. Driver Children’s Ideas in Science (Open University
Press, Milton Keynes, UK, 1985).

4. M. McCloskey, "Naive theories of motion." Mental
models edited by D. Gentner and A. Stevens (Lawrence
Earlbaum Associates, Inc, Melville, J, 1983): 299-324

5. S. Grover & R. Pea. Educational Researcher, 42, 38-42
(2013).

6. A. Baytak and S. Land, Educational Technology Research
and Development, 59(6), 765-782 (2011).

7. A. Dickes and P. Sengupta, Research in Science
Education, 43(3), 921-953 (2012)

8. B. Sherin, A. diSessa, and D. Hammer, Interactive
Learning Environments, 3(2), 91-118, (1993).

9. M. Guzdial, Interactive Learning Environments, 4(1), 1-
44 (1994).

10. Scratch.mit.edu
11. Computer Science Unplugged http://csunplugged.org/

136

