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Abstract. Computational thinking, an approach to problem solving, is a key practice of science education rarely 
integrated into instruction in an authentic way. A second key practice, creating models of physical phenomenon, has 
been recognized as an important strategy for facilitating students' deeper understandings of both science concepts and 
the practices of science. We are creating an interdisciplinary computational thinking curriculum for grades 4-6 that 
combines the development of computational thinking with content in other disciplines such as science. Here we present 
an example project where students can iteratively develop a model to explain the momentum and acceleration of an 
object, coupled with sophisticated computational thinking concepts to simulate that model. In addition, we present two 
findings from related research on fourth graders’ pre-instructional knowledge related to computational thinking: 1) 
Students recognized the need for but struggled to produce specific instructions, and 2) Students understood that small 
errors could change outcomes. 
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INTRODUCTION 

The Next Generation Science Standards [1] 
integrates science content with eight key practices of 
science and engineering. The intention is K-12 
students will be expected to not only learn about these 
practices, but also learn science content through these 
practices. Two practices key to this project are (1) 
Mathematical and Computational Thinking and (2) 
Developing and Using Models.  

The Computer Science Teachers Association 
(CSTA) defines computational thinking as “an 
approach to solving problems that can be implemented 
with a computer. … Computational thinking includes 
“abstraction, recursion, and iteration, to process and 
analyze data, and to create real and virtual artifacts” 
[2]. Computational thinking, however, is not limited to 
work on a computer. It is a method of problem solving 
useful across disciplines, including physics.  

In this project, we are developing a set of activities 
for children in grades 4-6 that will support students’ 
science learning by developing and using models while 
developing computational thinking. Along with this, 
we are developing an empirically-based learning 
progression for computational thinking.  

We have long recognized that students come into 
instruction with many ideas about science from their 
everyday interactions with the real world [3]. For 
example, we know that young children articulate that 

things slow down because “force runs out” [4], an idea 
counter to the accepted scientific explanation but 
consistent with their everyday observations. To help 
children develop understandings aligned with 
scientific ideas, we need to be cognizant of children’s 
existing interpretations of their observations. 

Thus, to help children develop computational 
thinking, we must be aware of their existing ideas and 
related experiences. Unfortunately, we know very little 
about children’s notions and skills related to 
computational thinking [5]. Thus, as a first step toward 
developing curriculum, we are investigating children’s 
notions about computational thinking developed prior 
to formal instruction in this area. 

Here, we present an example activity that engages 
students in developing and using a model of a physics 
phenomenon and discuss computational thinking. We 
then describe our research design and present initial 
findings about fourth grade students’ pre-instructional 
ideas related to three aspects of computational 
thinking.  
 

MODELING, COMPUTATIONAL 
THINKING, AND PROGRAMMING 

As an example activity, consider students engaged 
in dropping objects of different masses onto a seesaw 
that then projects another object up. After making 
observations of such real life objects in a lab setting, 
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students could develop a computer program (or 
simulation) that models the behavior of the launched 
object in response to the mass of the dropped object. 
To create a program which mimics the real life 
observations, a student would need to consider 
whether and how the mass of the falling object was 
related to the rate at which the object fell, the 
maximum height of the launched object, as well as 
whether the deceleration of the launched object as it 
traveled upwards is the same as the acceleration of the 
object as it falls back down, and other factors. The 
student could then write a program that would animate 
objects to match their observations. 

While programming activities have been used to 
assess students’ understanding of science ideas [6] and 
help students model science phenomenon [7,8], the 
difficulty of programming can limit its usefulness [9]. 
Several graphical programming interfaces have been 
developed that allow novices to more easily engage in 
authentic programming and computational thinking 
activities. Scratch [10] is one such graphical 
programming interface that lowers the cognitive 
barriers to programming by removing the possibility of 
making syntax errors. When programming in Scratch, 
users select blocks and drag them onto the 
programming area, creating scripts associated with 
agents (called sprites) and the background.  

Returning to the example activity described above, 
Figure 1 shows three screen shots at sequential time 
points of a possible animation using the Scratch 
programming environment showing a rock falling on a 
seesaw and projecting a person up. Three rocks of 
different masses can be dropped on the seesaw. The 
left column shows sample scripts (programs) that a 
student might write to animate the man. This script 
shows that the man would travel upwards to different 
heights (different values of y) depending on the rock. 
However, as this program is written, the man moves at 
a constant velocity. Gravity is not accounted for. In 
this way the animation models some aspects of 
observations but is limited in others.  

In such an activity, students must first develop a 
conceptual model of the physical phenomenon and 
identify all relevant variables and the relationship 
among these variables. They then must translate these 
ideas into a computer simulation using precise 
language. Observing the results of their simulation 
allows them to assess how well their model matches 
reality and iterate their model until it is a reasonable 
representation. This process involves two key concepts 
in computational thinking: abstraction (identifying 
only relevant variables) and programming (using 
sequential execution and message passing). 
 

 

 

 

 
 
FIGURE 1.  Left shows sample script for one sprite (the 
projected man) of an animation. The right shows three 
sequential screenshots of the stage of an animation.   

RESEARCH DESIGN 

The results we report here are part of a larger 
project designed to develop a learning progression 
about computational thinking for grades 4-6. This 
learning progression will inform our curriculum 
development. A learning progression consists of a 
lower anchor describing learners’ pre-instructional 
ideas, an upper anchor point describing goals, and 
several intermediate levels.  

Hypothesized Learning Progression. We began 
with a hypothesized learning progression of how ideas 
would develop over time with appropriate curriculum. 
This learning progression will be iteratively revised as 
the project progresses. Our first stage was to test the 
lower anchor point, i.e., those ideas we expected 
fourth graders to develop prior to formal instruction. 

Our hypothesized learning progression included six 
strands aligned with aspects of computational thinking 
described by the CSTA: Abstractions, Knowledge 
about algorithms, Algorithms, Data, Knowledge about 
how computers work, and Programming. For each 
strand we proposed three to eight smaller ideas of 
incrementally higher sophistication. These were based 
on the CSTA standards [2]. The lowest level for the 
Algorithms (Al) and Knowledge of how computers 
work (KC), were, 

Al-1: Develop one algorithm - Create step-by-step 
instructions for an age-appropriate task. 
KC-1: Computers have a very limited vocabulary, so you 
have to learn how to tell them what to do.  
These ideas are both important not only for the 

strands they are listed in, but also for the programming 
strand. The lowest idea in programming is  

P-1: Create step-by-step instructions for an age-
appropriate task for someone who is younger than you 
who has limited vocabulary.  
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P-1 builds on Al-1 and KC-1 because it includes 
both the idea of step-by step instructions (Al-1) and 
the idea of limited vocabulary (KC-1).  

Data Collection and Analysis. We conducted 
fifteen focus group interviews with fourth graders 
(N=55) at four elementary schools in California during 
May 2013. To obtain a representative sample, we 
selected participants from schools with a wide range of 
academic performance and backgrounds among 
students. We interviewed all students whose parents 
returned signed consent forms. The percentage of 
English Language Learners (ELL) ranged from 22% to 
81% and students receiving free or reduced lunch 
ranged from 29% to 100%. 

Each focus group interview lasted approximately 
30 minutes and was filmed. The interviews included 
three topics (knowledge about computers, complex 
decisions, and sequential procedures), and ended with 
one of four activities designed to elicit ideas related to 
aspects of computational thinking.  

Here we focus on the six focus group interviews in 
which the students (N=23) participated in the drawing 
activity. The drawing activity was based on an activity 
in CS Unplugged called Marching Orders [11], where 
students were given a picture and then asked to give 
instructions to another student, who was to draw the 
picture based on the directions.   

We adapted the activity in the following ways.  
First, we did the activity in three rounds, each 
progressively more difficult. In the first round, the 
picture was simple: a circle, square, and triangle 
vertically arranged and touching. In the second, the 
picture was a square with lines bisecting different 
sections. In the final round, the picture included shapes 
and wavy lines, haphazardly organized. We also 
adapted the activity so that students participated in 
different ways during each round. In the first two 
rounds, one student gave directions to the other 
students. In the third round, students worked together 
and created directions for the interviewer, who would 
draw a picture based on their description.  

The discussion from this activity in the six groups 
was transcribed, and we assigned pseudonyms to all 
participants and schools. We analyzed these segments 
for discourse that supported or challenged our 
proposed model. Text was coded by its connection to 
the hypothesized learning progressions.  

FINDINGS 

Finding 1: Fourth graders recognized the need for 
specific instructions but struggled to produce them. 

 
As described above, we hypothesized that fourth 

graders could create step-by-step instructions. This 

idea is related to two areas of computational thinking: 
algorithms and programming. Participants recognized 
when others’ instructions were vague and provided 
suggestions to amend the instructions, but they 
struggled to produce specific instructions themselves. 
In the drawing activity, many students described 
shapes and explained directions with their hands or 
metaphors; however, they did not include details such 
as location, position, size, or pattern required to enable 
someone else to reproduce the drawing. 

For example, in the first round of the drawing 
activity, students were asked to give directions for a 
simple picture: a circle, square, and triangle where 
each shape abuts another vertically. José described the 
picture as a series of shapes, but did not specify size or 
position of the shapes. This information was important 
to include because the triangle could be oriented in a 
number of ways and the shapes could be spaced apart. 

José: There’s a circle on the top. 
Interviewer: So we’re going to draw a circle on top. 
José: There’s a triangle – there’s a square in the 
middle. There’s a triangle at the bottom. 

This type of description was common. Fourth graders 
easily identified shapes and described how the shapes 
were aligned with respect to each other, but often left 
out crucial information such as size or position. For 
instance, José did not describe whether the shapes 
were touching, the triangle’s orientation, or the size of 
the shapes. 

In terms of receiving directions, the fourth graders 
did replicate pictures from the directions of their peers 
in all three rounds. When asked, they also recognized 
how the directions could be improved to more 
accurately replicate the picture. For instance, Victor 
and Angel shared that José could have specified that 
the shapes “connected.” 

Interviewer: What are some things that José could 
have said that might have made your pictures look 
more like [the original] picture? 
Victor: To connect them, connect the shapes. 
Interviewer: How would you have said it then? 
Victor: There’s a circle, a square, and a triangle. 
Angel: [overlap] Between the middle and the tops. 

Here, Victor described that had José included more 
information such as connecting the shapes, he could 
have drawn the picture more accurately. 

That fourth graders lacked specificity when giving 
direction was an important preliminary finding. 
Recognizing the need for and critique of step-by-step 
instructions appeared to be an anchor point below our 
lowest anchor point in two strands of our hypothesized 
learning progression: algorithms and programming 
(Al-1 and P-1).  

Finding 2: Fourth graders recognized that small 
errors could change outcomes. 
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We hypothesized that fourth graders would know 
that computers have a very limited vocabulary. 
Preliminary results suggested that while our 
participants were not aware of computers having a 
limited vocabulary, they did relate instances where 
small deviances from what was “allowed” by a 
program resulted in errors. From this, we inferred that 
fourth graders knew that they must communicate in 
specific ways for a computer (or program) to work 
properly.  

For example, Jess recognized that in a typing 
program used at her school, the difference between “j” 
and “J” resulted in different outcomes: 

Interviewer: So the whole point [of the drawing 
activity we just did] is that when we’re playing with 
computers and we’re typing, the computer needs 
really specific directions right? 
Jess: Right, like I – I put like – in Mavis Beacon 
even if like put j-k-j and it was supposed to be J-
capital J.  

Jess connected a statement about how computers need 
specific directions to mistakes she had made with a 
typing program.  

In a second example, Henry came to a similar 
conclusion. After the interviewer explained that the 
purpose of the drawing activity was to demonstrate 
that computers need specific directions, Henry noted 
that even small errors such as “one wrong number” 
might change the outcome.  

Interviewer: So the reason that we’re doing this is 
because when you’re working with computers, you 
have to give really precise directions right? 
Henry: Oh! Computer programmer? 
Interviewer: And it’s actually really, really hard – 
Henry: You do like one wrong number – you do 1 
instead of 0 the whole thing [is wrong]  

Just as Jess recognized the importance of 
distinguishing “J” and “j” for the typing program, 
Henry recognized that for computer programmers if 
they use “1” instead of “0”, the computer may not do 
what the user expects.  

These two examples suggested that some fourth 
graders enter the classroom with a knowledge that 
people need to use specific language to communicate 
with computers; however, they did not suggest that 
computers have a limited vocabulary. This was a 
subtle but important difference. While the students did 
not volunteer that computers had their own language, 
they did recognize that there were ineffective ways to 
communicate. Thus, preliminary evidence suggested 
that students understand that small errors (a single 
character) could change the outcome, an idea below 
the lowest anchor point of the strand Understanding 
how computers work in our hypothesized learning 
progression (CW-1).  

DISCUSSION AND IMPLICATIONS 

Children develop ideas relevant to learning 
computational thinking through their rich everyday 
experiences engaging in problem solving and decision 
making as well as interacting with computers and 
media. Understanding their existing ideas will help us 
build meaningful and relevant curriculum that 
integrates computational thinking with other content 
areas. We think that using computational thinking and 
programming as tools for students to develop, use, and 
iterate models of science phenomenon they observe is 
a particularly powerful method of learning physics.  

Our preliminary findings described students’ 
computational thinking prior to instruction. Both 
findings presented here allowed us to describe anchor 
points lower than those in our proposed learning 
progression. This will contribute to our first revision of 
the learning progression. Also, our findings have 
implications for how we design the curriculum. Our 
activities will be developed with this understanding of 
students’ prior knowledge.  

As our project progresses we will collect data to 
understand how elementary students’ computational 
thinking develops over several years of instruction and 
how such thinking co-develops with science concepts, 
and ideas about building and using science models. 
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